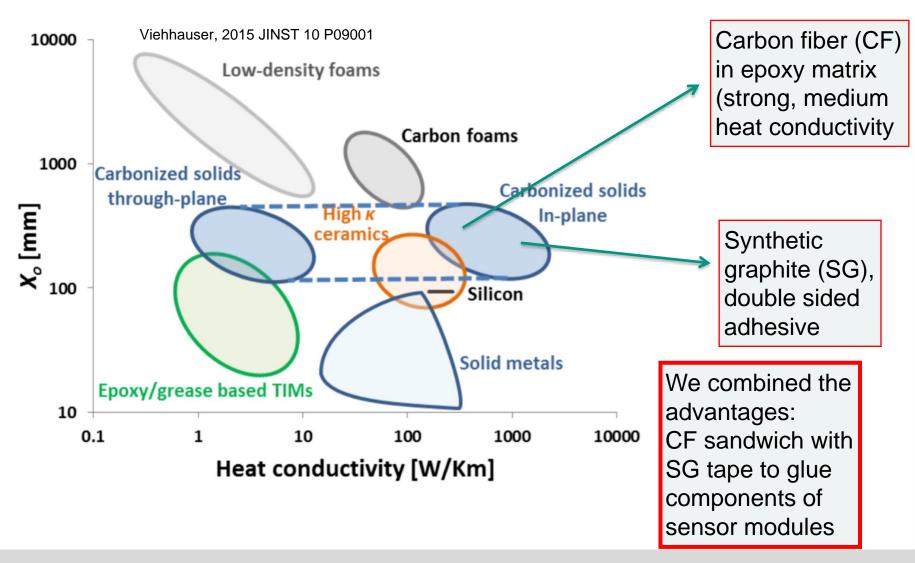


Usage of synthetic graphite in future tracking detectors

DPG Münster 29.03.17 – HK 36.9

Tobias Barvich, Conny Beskidt, Wim de Boer, Alexander Dierlamm, •Stefan Maier


Institut für Experimentelle Kernphysik

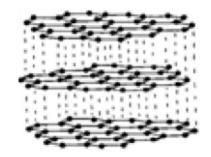
www.kit.edu

Heat conduction materials

x,y directions

- Graphite covered with adhesive layers on both sides, so it can be directly glued to components
- Thermal link between components and cooling structure

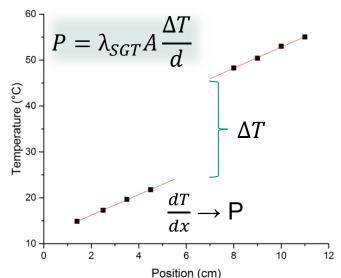
Produced by sintering polyimide tape above 3000°C

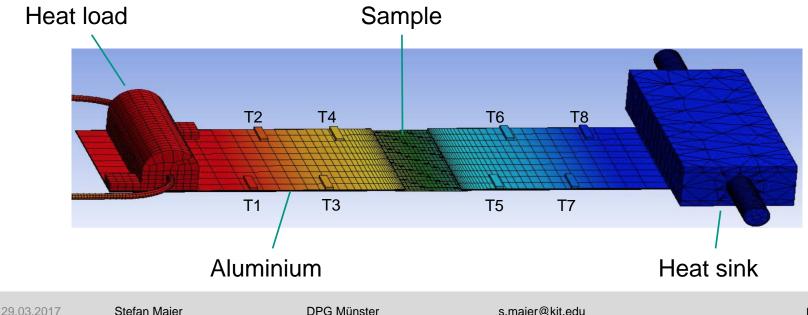

(plasma ovens) so carbon changes into liquid crystal

phase and forms highly conductive graphene layers in

- Adhesive PET layers withstand HV
- Widely used for cooling in electronics (mobile phones,...) so cheap and many manufacturers (providing precut shapes)

Synthetic graphite




s.maier@kit.edu

Thermal conductivity measurement

- Problem to measure heat conductivity in thin layer: how much heat goes through the layer?
- Basic idea: conduct heat via known conductor between heat source, sample and heat sink and determine heat flow from temperature drop in the known conductor.

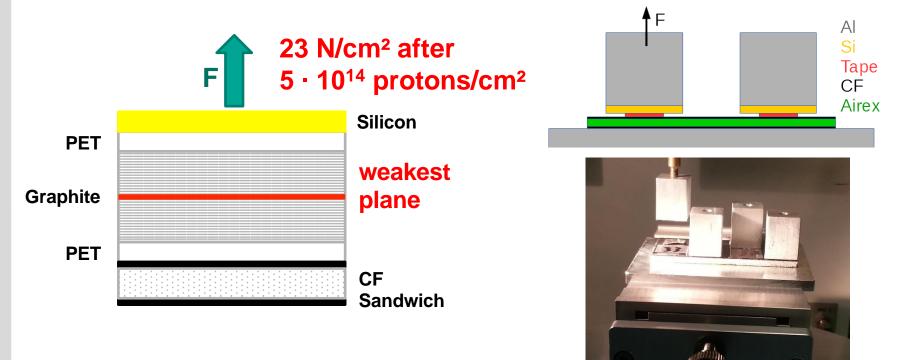
4

Thermal conductivity of various SGTs

SGT	Graphite (µm)	Total (µm)	$\lambda_{ m Gr.,man.} \ \left(rac{W}{mK} ight)$	$\frac{R}{\left(\frac{K}{W}\right)}$	$\lambda_{ m Gr.} \ \left({W \over mK} ight)$	$rac{\lambda_{ ext{eff.}}}{\left(rac{ ext{W}}{ ext{mK}} ight)}$
FGS-020 ¹	200		600	$6.9(\pm 0.3)$	$216 (\pm 9)$	
$FGS-0125^1$	125		700	$11.8 (\pm 0.5)$	$203 (\pm 9)$	
$BM1000^{2}$	150		600	$21.2 (\pm 0.6)$	$95(\pm 3)$	
$BM1000^2$	70		600	$22.9(\pm 0.9)$	$187(\pm 7)$	
$GS2000^2$	45		1200	$14.6 (\pm 0.8)$	$455 (\pm 25)$	
$TSM-1500D^3$	25	49	1500	$13.9(\pm 1.3)$	$864 (\pm 78)$	$442 (\pm 40)$
$DSN5025-05C05C^{4}$	25	35	1500	$14.5 (\pm 1.3)$	$824 (\pm 74)$	$593 (\pm 53)$
$DSN5025-12C12C^4$	25	49	1500	$14.3 (\pm 1.3)$	$834(\pm 74)$	$427 (\pm 38)$
$\mathrm{DSN5040\text{-}12C12C^4}$	40	64	1200	$12.4 (\pm 0.8)$	$602 (\pm 37)$	$379(\pm 23)$

¹ Amec Thermasol

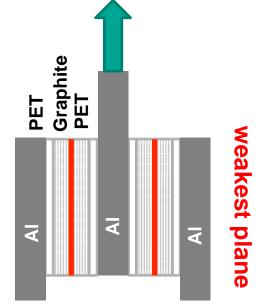
² Shenzhen JRFT Electronic Technology Co., Ltd.

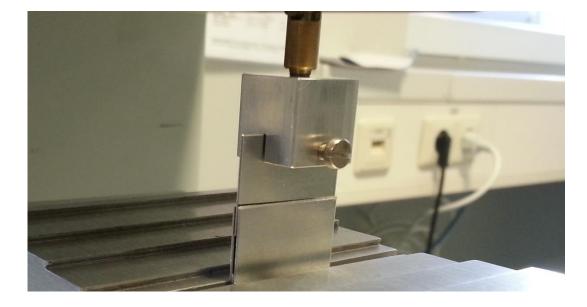

³ Shenzhen Laimeisi Silicon Industry Co., Ltd

⁴ Suzhou Dasen Electronics Material Co, Ltd.

Irradiation tests of SGT – Pull forces

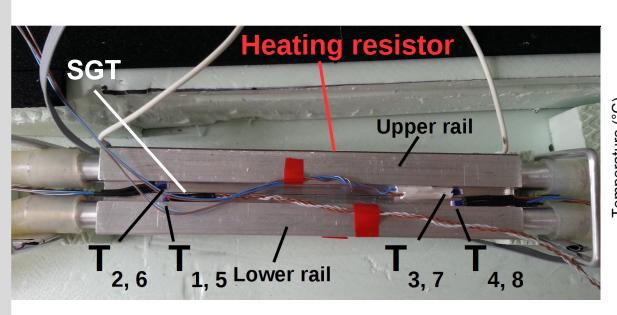
Maximal force allowed on SGT, measured by pull test machine, was about 40 N/cm². Break at weakest point: graphene layers.

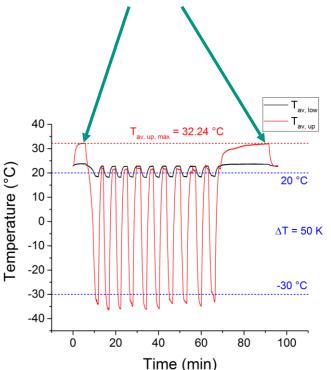



Irradiation of 5.10¹⁴ protons/cm² reduces strength by about 40% (23 N/cm²)

Shear forces

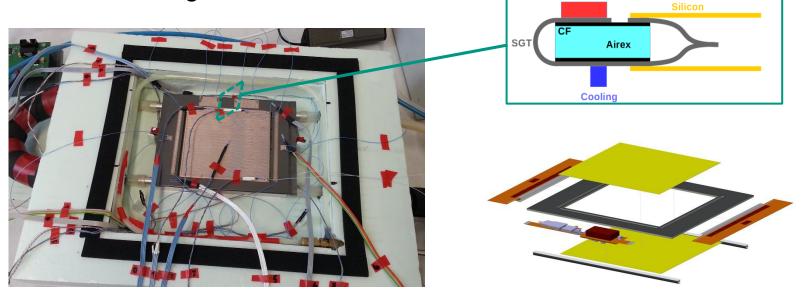
The graphene layers in the SGT are only weakly connected by Vander-Waals forces, so they easily slide over each other




29 N/cm² enough to withstand thermal stress due to different CTE of glued components

Shear forces due to CTE mismatches

- Two aluminum rails connected by SGT
- Shear force on SGT generated by cooling down one rail (CTE AI: 22·10⁻⁶)
- Thermal connection of the SGT was not affected by many thermal cycles between 20°C and -30°C



Example of application – CMS like modules

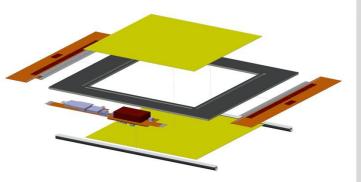
The CMS tracker of the Phase II Upgrade consists of ~ 14000 modules with different granularities

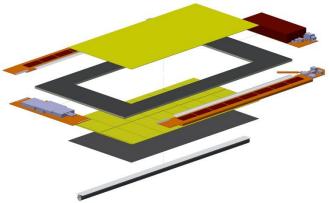
With SGT complex cooling structures can be realized very easily due to its flexibility

Advantages of taped concepts

By using taped components fast production procedures are possible

→ Semi-automated module production with gantries by pressing few parts together





Conclusion

- SG tape interesting material for future module construction
- Sticks well to metal and CF by pressure sensitive adhesives
- SG tape allows for easy module construction (no curing time) and excellent thermal performance
- Proven to work with CMS-like dummy prototypes yielding mechanically robust and radiation hard modules with excellent thermal performance with standard materials

